Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling

نویسندگان

  • Allyson L. Kranstuber
  • Carlos del Rio
  • Brandon J. Biesiadecki
  • Robert L. Hamlin
  • Joseph Ottobre
  • Sandor Gyorke
  • Véronique A. Lacombe
چکیده

Diabetic heart disease is a distinct clinical entity that can progress to heart failure and sudden death. However, the mechanisms responsible for the alterations in excitation-contraction coupling leading to cardiac dysfunction during diabetes are not well known. Hyperglycemia, the landmark of diabetes, leads to the formation of advanced glycation end products (AGEs) on long-lived proteins, including sarcoplasmic reticulum (SR) Ca(2+) regulatory proteins. However, their pathogenic role on SR Ca(2+) handling in cardiac myocytes is unknown. Therefore, we investigated whether an AGE cross-link breaker could prevent the alterations in SR Ca(2+) cycling that lead to in vivo cardiac dysfunction during diabetes. Streptozotocin-induced diabetic rats were treated with alagebrium chloride (ALT-711) for 8 weeks and compared to age-matched placebo-treated diabetic rats and healthy rats. Cardiac function was assessed by echocardiographic examination. Ventricular myocytes were isolated to assess SR Ca(2+) cycling by confocal imaging and quantitative Western blots. Diabetes resulted in in vivo cardiac dysfunction and ALT-711 therapy partially alleviated diastolic dysfunction by decreasing isovolumetric relaxation time and myocardial performance index (MPI) (by 27 and 41% vs. untreated diabetic rats, respectively, P < 0.05). In cardiac myocytes, diabetes-induced prolongation of cytosolic Ca(2+) transient clearance by 43% and decreased SR Ca(2+) load by 25% (P < 0.05); these parameters were partially improved after ALT-711 therapy. SERCA2a and RyR2 protein expression was significantly decreased in the myocardium of untreated diabetic rats (by 64 and 36% vs. controls, respectively, P < 0.05), but preserved in the treated diabetic group compared to controls. Collectively, our results suggest that, in a model of type 1 diabetes, AGE accumulation primarily impairs SR Ca(2+) reuptake in cardiac myocytes and that long-term treatment with an AGE cross-link breaker partially normalized SR Ca(2+) handling and improved diabetic cardiomyopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes.

The formation of advanced glycation end products (AGEs) on extracellular matrix components leads to accelerated increases in collagen cross linking that contributes to myocardial stiffness in diabetes. This study determined the effect of the crosslink breaker, ALT-711 on diabetes-induced cardiac disease. Streptozotocin diabetes was induced in Sprague-Dawley rats for 32 weeks. Treatment with ALT...

متن کامل

Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart.

Aging and diabetes mellitus (DM) both affect the structure and function of the myocardium, resulting in increased collagen in the heart and reduced cardiac function. As part of this process, hyperglycemia is a stimulus for the production of advanced glycation end products (AGEs), which covalently modify proteins and impair cell function. The goals of this study were first to examine the combine...

متن کامل

Advanced glycation end products reduce the calcium transient in cardiomyocytes by increasing production of reactive oxygen species and nitric oxide

Advanced glycation end products (AGE) are central to the development of cardiovascular complications associated with diabetes mellitus. AGE may alter cellular function through cross-linking of cellular proteins or by activating the AGE receptor (RAGE). However, the signalling molecules involved during AGE stimulation in cardiomyocytes remain unclear. Here, we investigated the effects of AGE tre...

متن کامل

Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease.

Although the features of diabetic cardiomyopathy, atherosclerosis, and nephropathy have been clinically characterized, the pathogenesis and the mechanisms underlying the abnormalities in the diabetic heart and kidney are not fully understood. During the past several years, in an attempt to discover interventions for diabetes-related complications, researchers have refocused their attention from...

متن کامل

Cannabinoid 1 Receptor Promotes Cardiac Dysfunction, Oxidative Stress, Inflammation, and Fibrosis in Diabetic Cardiomyopathy

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012